Mg2+ ions do not induce expansion of the melted DNA region in the open complex formed by Escherichia coli RNA polymerase at a cognate synthetic Pa promoter. A quantitative KMnO4 footprinting study.
نویسندگان
چکیده
Footprinting studies of prokaryotic open transcription complexes (RPO), based on oxidation of pyrimidine residues by KMnO4 and/or OsO4 at a single oxidant dose, have suggested that the extent of DNA melting in the transcription bubble region increases in the presence of Mg . In this work, quantitative KMnO4 footprinting in function of the oxidant dose of RPO, using Escherichia coli RNA polymerase (E(sigma)70) at a fully functional synthetic promoter Pa having -35 and -10 consensus hexamers, has been used to determine individual rate constants of oxidation of T residues in this region at 37degrees C in the absence of Mg2+ and in the presence of 10 mM MgCl2, and to evaluate therefrom the effect of Mg2+ on the extent of DNA melting. Population distributions of end-labeled DNA fragments corresponding to oxidized Ts were quantified and analyzed according to the single-hit kinetic model. Pseudo-first order reactivity rate constants, ki, thus obtained demonstrated that Mg2+ ions bound to RPO merely enhanced the reactivity of all 11 oxidizable thymines between the +3 and -11 promoter sites by a position-dependent factor: 3-4 for those located close to the transcription start point +1 in either DNA strand, and about 1.6 for those located more distantly therefrom. On the basis of these observations, we conclude that Mg2+ ions bound to RPO at Pa do not influence the length of the melted DNA region and propose that the higher reactivity of thymines results mainly from lower local repulsive electrostatic barriers to MnO4 diffusion around carboxylate binding sites in the catalytic center of RPO and promoter DNA phosphates.
منابع مشابه
Mg2+ does not induce isomerization of the open transcription complex of Escherichia coli RNA polymerase at the model Pa promoter bearing consensus -10 and -35 hexamers.
The kinetics and thermodynamics of the formation of the transcriptional open complex (RPo) by Escherichia coli RNA polymerase at the synthetic Pa promoter bearing consensus -10 and -35 recognition hexamers were studied in vitro. Previously, this promoter was used as a control one in studies on the effect of DNA bending by An x Tn sequences on transcription initiation and shown to be fully funct...
متن کاملReal-time footprinting of DNA in the first kinetically significant intermediate in open complex formation by Escherichia coli RNA polymerase.
The architecture of cellular RNA polymerases (RNAPs) dictates that transcription can begin only after promoter DNA bends into a deep channel and the start site nucleotide (+1) binds in the active site located on the channel floor. Formation of this transcriptionally competent "open" complex (RP(o)) by Escherichia coli RNAP at the lambdaP(R) promoter is greatly accelerated by DNA upstream of bas...
متن کاملMycobacterial RNA polymerase forms unstable open promoter complexes that are stabilized by CarD
Escherichia coli has served as the archetypal organism on which the overwhelming majority of biochemical characterizations of bacterial RNA polymerase (RNAP) have been focused; the properties of E. coli RNAP have been accepted as generally representative for all bacterial RNAPs. Here, we directly compare the initiation properties of a mycobacterial transcription system with E. coli RNAP on two ...
متن کاملFunctionally distinct RNA polymerase binding sites in the phage Mu mom promoter region.
Transcription of the phage Mu com/mom operon is trans-activated by another phage gene product, C, a site-specific DNA binding protein. To gain insight into the mechanism by which C activates transcription, we carried out footprinting analyses of Escherichia coli RNA polymerase (= RNAP) binding to various com-lacZ fusion plasmids. KMnO4-sensitive sites (diagnostic of the melted regions in open-c...
متن کاملTranscription activation at Escherichia coli promoters dependent on the cyclic AMP receptor protein: effects of binding sequences for the RNA polymerase alpha-subunit.
Transcription activation at two semi-synthetic Escherichia coli promoters, CC(-41.5) and CC(-72.5), is dependent on the cyclic AMP receptor protein (CRP) that binds to sites centred 41.5 and 72.5 bp upstream from the respective transcription startpoints. An UP-element that can bind the C-terminal domain of the RNA polymerase (RNAP) alpha-subunit was cloned upstream of the DNA site for CRP at CC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta biochimica Polonica
دوره 48 2 شماره
صفحات -
تاریخ انتشار 2001